New developments in print quality characterization

How topography analysis provides additional insights in combination with ink-substrate interaction studies

> Dr. Sebastian Schaubach DataPhysics Instruments GmbH Filderstadt, Germany

> > dataphysics

Inkjet Academy 2020

Introduction

-dataphysics

DataPhysics Instruments GmbH

Manufacturer of high-quality measuring equipment for characterizing surfaces and interfaces...

dataphysics Understanding Interfaces

- → Start-up in 1997: Headquarters in Filderstadt with modern Application Lab & Training Center
- → Since 2018: US subsidiary in Charlotte, NC
- → Sales activities worldwide in more than 70 countries...

Optical Contact Angle measuring and contour analysis systems

Dyn. Contact Angle measuring instruments and Tensiometers

Spinning-drop Video-Tensiometers

Humidity Generator and Controller

MultiScan stability analysis system

g

Surface Profile Analyzer

Print quality characterization for minimization of development costs

- Printing ink and substrate development are targeted towards an application-specific optimization of the ink-substrate interaction
- → Study of ink-substrate interaction by **Wetting Analysis** !!!
 - \rightarrow Measurement of contact angles

dataphysics

- → Characterization of ink and substrate surface properties
 - → Surface tension/surface energy
 - → Prediction of wetting behaviour
- → Study of absorption behaviour
- → Emulation of final printing process at early stage development

 \rightarrow The contact angle θ is determined by the surface tension of the liquid σ_{l} & the surface energy of the solid σ_{s} ...

- → for the static contact angle θ (motionless front of the liquid) it holds: $\sigma_s = \gamma_{sl} + \sigma_l \cdot \cos \theta$ Young equation
 - → describes the equilibrium of forces at the 3-phase contact line
 - \rightarrow γ_{sl} is the solid-liquid interfacial energy, which depends on the "compatibility" of the bonds of the solid and those of the liquid...

Wetting Analysis

Contact angle measurement with optical contour analysis system

- \rightarrow Defined dosing of liquid drops
- Positioning of solid substrates
- **Optics for capturing drop images** by camera and optical lenses (3) \rightarrow
- Software for system control and image processing
- and illumination (4) by according software (SCA) (5)

Schematic Figure from DIN 5560

Wetting Analysis

Contact angle measurement with optical contour analysis system

-dataphysics

→ Sessile drop is dosed on substrate,

- conventionally by syringe in electronic syringe module
- → When contact area is constant:
 - Automatic substrate line & drop contour detection, contour fit with appropriate model (e.g. ellipse)
 & direct contact angle calculation

Contact angle measurement on rough surfaces

- \rightarrow Conventional dosing of μ l drops yields the 'apparent CA' θ^{app}
 - \rightarrow for rough surfaces: $\theta^{app} \neq \theta$ ('material CA')
 - \rightarrow for ideally flat surfaces: $\theta^{app} = \theta$

drop size

→ **Drop size matters** for rough surfaces, like printing substrates!

...independent of the dosing method!

Water contact angles on

dosing system

-dataphysics

silicone wafer (adsorbing) (slightly adsobing) 102,0° 69.0° 55,9° conventional macroscopic 69,5° 104,0° 57,5° macroscopic picodrop system PDDS 68.5° 68,0° 38,7° microscopic

paper

flat

Characterize rough substrates with drop sizes as in the final application!!!

On the Droplet Size and Application of Wettability Analysis for the Development of Ink and Printing Substrates, M. Grüßer, D. G. Waugh, J. Lawrence, N. Langer, D. Scholz, Langmuir, 2019, 35 (38), 12356-12365.

θ

coated paper

Wetting Analysis

-dataphysics

Picodrop Dosing System (PDDS) from DataPhysics Instruments

- → dosing volumes down to 15...380 pl (depending on liquid viscosity)
- → droplets dispensed via acoustic pulses from disposable cartridges
 - \rightarrow only small liquid amounts needed
 - \rightarrow no cleaning required
- ightarrow dispensing frequencies up to 1000 Hz
- \rightarrow with electric table axes of OCA 200:
 - → automated substrate movement
- → substrate characterization for and emulation of real printing processes
 - → drop size / dispensing frequency / substrate movement speed

Application of the PDDS for printing studies

- \rightarrow dispensing of individual drops
 - \rightarrow allows wetting analysis

- \rightarrow dispensing of connected drops
 - \rightarrow emulates line printing

Additional insights trough topography analysis

- \rightarrow Refinement of wetting analysis
 - → roughness coefficient r of substrate for correction of the contact angle according to Wenzel:

R. N. Wenzel, Resistance of Solid Surfaces to Wetting by Water. In: Ind. Eng. Chem. 28, 8, 1936, 988–994.

- → Evaluation of obtained print image
 - → 3D representation
 & analysis...

What happens after the ink has dried?

Topography Analysis

Surface Profile Analyzer (SPA 25) from DataPhysics Instruments

- → Defined positioning of the sample (1)
 (automated table allows for stitching)
- → Measurement head with optics (2)
- → Powerful computer to for data processing (3)

White Light Interferometer

White Light Interferometry

Principle of White Light Interferometry

- → The objective is moved in z-direction relativ to sample
- → In the interference zone ther is a sinusoidal change of the light intensity
- → This signal is analyzed -> determination of the 3d surface in high resolution

Resolution Comparison for Different Methods

-dataphysics

magnification	2.5x	5x	10x	20x	50x	100x
camera	2 MP – 1900 x 1200 pixel / measuring points					
measuring field / mm²	7.3 x 4.6	3.7 x 2.3	1.8 x 1.2	0.91 x 0.58	0.37 x 0.23	0.18 x 0.12
point spacing / µm	3.8	1.9	0.96	0.48	0.19	0.1
WD / mm	10.3	9.3	7.4	4.7	3.4	2

- → Resolution in Z-direction independent of objective
- → Highest resolution in Z-direction
- → Resolution in X/Y-direction and field of view depends on objective

Different approaches to study the drops after the ink has dried

Example measurement on a polished waver

Example measurement on a standard with line structures

Drop Particle Distribution After Evaporation of the Liquid Medium

 \rightarrow Directly after dosing spherical drops are observed

-> Surface Profile analysis after the liquid medium evaporated!

All particles got washed to the border! \rightarrow

0.3 Geometry: Layer thickness 400 nm Ring inner diameter 100 µm Ring width 10 µm \rightarrow A surface profile analysis can help to understand the drop geometry

Surface Profile Analysis Drops

Drop Particle Distribution After Evaporation of the Liquid Medium

 \rightarrow Directly after dosing a line is formed

-dataphysics

→ Surface Profile analysis after the liquid medium evaporated!

→ All particles got washed to the border and two particle lines are formed!

Understanding a printing process from dosing to the final print

- \rightarrow Wetting analysis
- → Simulation of printing processes
- → Measurement of diameters and geometry of printed wires
- → Study of particle distribution for printed drops
- → Estimation of layer thickness and homogeneity
- \rightarrow Roughness analysis

OCA 200

SPA 25

MultiScan Stability Analysis System (MS 20)

Optical stability analysis of liquid heterogeneous mixtures (suspensions, emulsions, foams)

Quantitative, objective results, non-intrusive, non-destructive method

© DataPh

Thanks for your attention!

Dr. Sebastian Schaubach International Sales Manager DataPhysics Instruments GmbH

Tel. 0711 / 770 556-54 s.schaubach@dataphysics-instruments.com www.dataphysics-instruments.com

→ Surface profile analysis coloured

21

GmbH

ents

DataPhvs

→ Contact angle standard (lithographic)

Summary: Print Quality Characterization

refinement

 \succ

Ink-Substrate Interaction Study

- Contact angle measurement
- Simulation of ink jet printing
- Optical Contour Analysis
 System OCA 200 with
 Picodrop Dosing System PDDS

Topography Analysis

- Determination of roughness parameters
- add. inform. \rightarrow 3D representation of the print image
 - Surface Profile Analyzer SPA 25