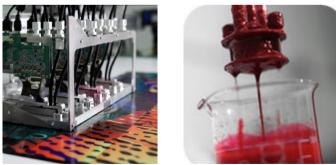
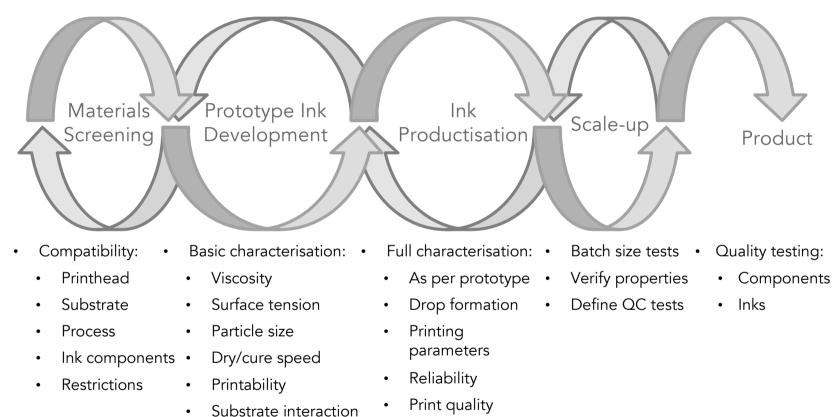
Manufacturing inks for industrial printers

IMI Europe Tech Talks InPrint 2019 Tim Phillips, Catenary Solutions

Presentation outline


- 1. Ink design for manufacturing
- 2. Ink testing strategy
- 3. Typical test equipment
- 4. Problems
- 5. Summary


Ink design - Considerations

- Things to know before formulating an ink for an application
 - Type of printhead technology e.g. DOD or CIJ, piezo or thermal?
 - Application properties e.g. colour, adhesion, lightfastness
 - Restrictions e.g. VOCs, food compatibility, regulatory compliance
 - Process requirements e.g. throughput, low energy consumption
- These requirements define the inks, and therefore the manufacturing process and tests needed

Ink design & test strategy

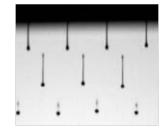
- End-use properties
- Process
- Ageing stability

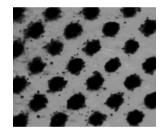
Ink testing strategy - materials screening

- Establish type of printhead and its limitations
- Establish type of ink, e.g. aqueous, solvent, oil, UVcurable, phase change
- Establish main components of ink, e.g. solvents, colorants, reactive materials
- Establish application requirements, e.g. speed, drying time, pre and post press sensitivities
- Establish any regulatory requirements
- Test contact parts of the system, e.g. printhead, ink delivery system with identified risky chemicals

Ink testing strategy - prototype ink development

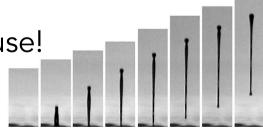
- Formulate prototype ink formulations
- Perform basic characterisation prior to printing
 - Viscosity
 - Surface tension
 - Particle size, sedimentation rate
 - Drying or curing rate
- Print if properties appear acceptable
 - Printing is only way to fully test an ink!
 - Assess printability
 - Assess interaction with substrate
 - Assess end-user properties





Ink testing strategy - ink productisation

- Optimise inks for production performance
- Test under pilot production conditions:
 - Drop formation properties
 - Printing parameters, e.g. waveform, drive voltage
 - Printing reliability
 - Start/stop tests (latency/open time)
 - Develop process parameters with sensitivity analysis
 - Assess print quality
 - Assess/estimate shelf life of inks through ageing studies
- Repeat testing under production printing conditions



Viscosity/rheology

- Measure of the resistance to motion of a given fluid
 - If viscosity is too high, ink will not flow out of nozzles
 - If viscosity is too low, ink will eject with poor control
- Complicated by high shear conditions at nozzles
- Typically characterised using low shear viscometers (e.g. Brookfield)
- Rheometers for measuring low viscosity fluids at high shear available
- The inkjet printhead is the best rheometer to use!

Surface tension

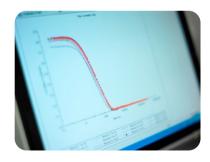
- Controls:
 - Jet break-up process, i.e. formation of drops
 - Faceplate wetting
 - Ink channel re-fill
 - Interaction between printed drop and substrate
- Dynamic process, typical tests:
 - Static surface tension: DuNouy ring methods
 - Dynamic surface tension: Maximum bubble pressure tensiometer (e.g. Kruss BP2)
 - Contact angle: Theta optical tensiometer (e.g. KSV Instruments)

Drop formation studies

Impact of surface tension

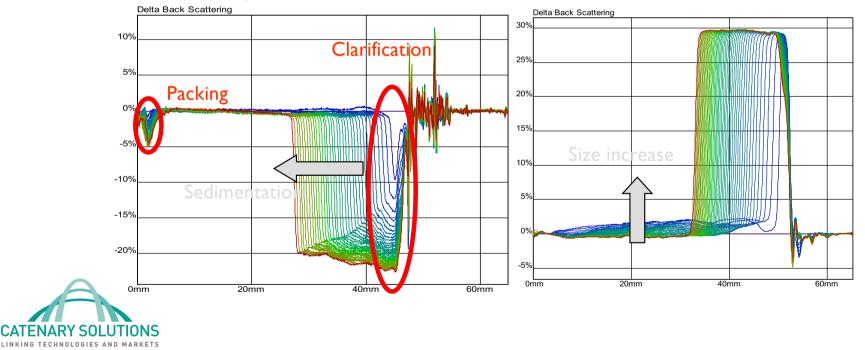
- Drop behaviour on substrate controlled by
 - Surface tension of ink relative
 - Surface energy of substrate
- Tune morphology of printed features by adjusting ink properties

UV-cured ink on plastic


UV-cured ink on copper

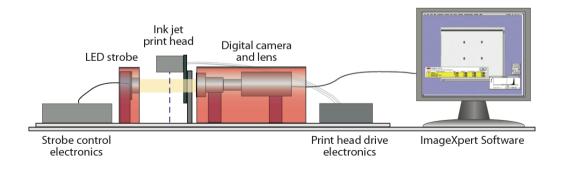
Particle size

- Particulate content in inkjet inks typically sub-micron
- Aggregation can cause blockage of nozzles
- Important to measure particle size over time for:
 - Dispersions
 - Inks
- Timed filtration of fixed quantity of ink
 - Does not give particle size
 - Provides quick indication of problems
- Light scattering systems used to measure particle sizes



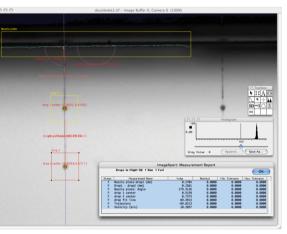
Sedimentation rate

- Increasingly important parameter as denser materials become more routinely used
- A Turbiscan system can give vital data on migration rates and rate of change of particle size


Other fluid properties

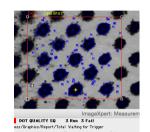
- Other fluid property measurements include:
 - Conductivity
 - pH
 - Amount of dissolved gas
 - Degree and type foaming
 - Recirculating flow characterisation

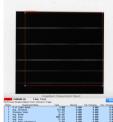
Drop formation


- Drop visualisation tools are key to successful ink development
- Enable:
 - Development and optimisation of printing parameters
 - Determination of window of printing reliability
 - Development of maintenance requirements
 - Diagnosis of printing failure modes
- Stroboscopic systems capable of single event capture for imaging single drops

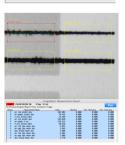
Drop formation 2

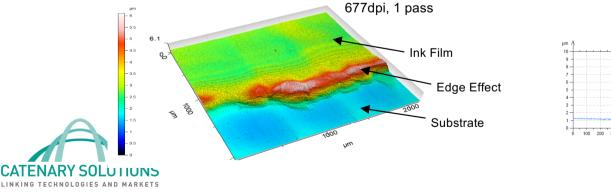
- Characterise:
 - Drop volume, velocity, trajectory
 - Ligament length, volume, break-off lengt
 - Satellites
 - Nozzle plate wetting

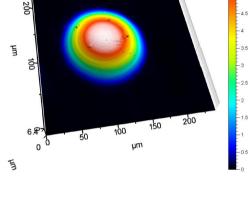




Print quality analysis

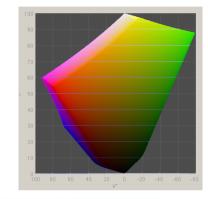

- Degree and type of analysis required highly dependent on application
- Typical measurements include:
 - Feature size/quality:
 - dot size, dot roundness, dot axis ratio
 - line width, line edge raggedness
 - Image attributes: satellites, contrast, colour bleed, mottle, pinholes
 - Dot placement accuracy: dot-to-dot spacing, relative displacement of dots from a datum point

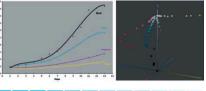




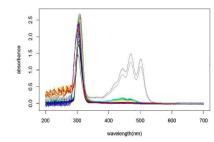
Metrology

- Crucial for materials deposition applications
- Measure 3D profiles to determine:
 - Film thickness
 - Aspect ratios
 - Uniformity over areas
 - Drying effects & profiles
- Stylus and optical systems available




Colour measurement

- Measurement/definition of the colour gamut of great importance
 - 3D colour space
 - Choice of colorants determines region of achievable colours
- Measurements must always be performed on the real substrate/medium
 - Densitometer Optical density
 - UV/Vis Absorption characteristics
 - Spectrophotometer Colour co-ordinates
 - Flop index Metallic effect coatings
- Fastness measure of resistance of chroma against environmental impact:



Light, Wash, Crock, Solvent etc.

End-user properties

- How does the printed ink perform in the application?
- Commonly encountered measurements are:
 - Adhesion: cross-hatch tape test
 - Hardness: pencil hardness test
 - Flexibility: 180° bend test
 - Stress/strain curve: strain gauge
 - Degree of cure: smudge test
 - Conductivity/resistivity: 4-point probe
 - Refractive index: refractometer
 - Hydrophobicity: contact angle

Problem solving

- Is it the:
 - Ink?
 - Printhead?
 - Something else, e.g. ink delivery system, motion system, environmental conditions?
- Inkjet is a complex multi-disciplinary area
 - Need understanding of all components of a printing system
 - Step-by-step testing and evaluation of ink properties during development minimises issues before and after launch

Diagnosing issues

- Most printing issues can be diagnosed using:
 - A drop visualisation system
 - A nozzle test pattern
 - A microscope
- ALL printing issues can be diagnosed using:
 - Understanding of underlying chemistry of ink and substrate
 - Understanding of the characteristics of the printhead
 - Understanding the characteristics of the ink delivery system
 - Understanding of the product handling

Summary

- Ink design for manufacture is crucial to the successful implementation of inkjet printing in an industrial production environment
- Inks need to be tested at all stages of design and manufacture
- Different applications will require different types of testing
- Ink development and manufacturing should be performed with industrialisation in mind

• Test, test and TEST!